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Abstract 

The probabilistic theory of the three-phase structure 
invariant for a triplet of isomorphous structures is 
worked out. In particular, when diffraction data are 
available for a native protein and two derivatives, the 
conditional distributions of the three-phase structure 
invariants, given the nine magnitudes in their first 
neighbourhoods, are derived for the special case that 
the heavy atoms of the two derivatives are located in 
different positions in the unit cell. The distributions 
have the form P(I2) = ( l / K )  exp (A cos O), where 
the parameters K and A are functions of the nine 
magnitudes in the first neighborhood. In the favorable 
case that the variance of a distribution happens to be 
small, a reliable estimate, 0 or ,rr, of the invariant is 
obtained. An example shows that these distributions, 
which employ simultaneously the diffraction data 
from a triple of isomorphous structures, yield more 
accurate estimates for the three-phase structure 
invariants than are obtainable from earlier distribu- 
tions, which employ diffraction data from only a pair 
of isomorphous structures [Hauptman (1982). Acta. 
Cryst. A38, 289-294]. Unique origin and enan- 
tiomorph specification in direct-methods applications 
to all three structures is an advantage of the present 
approach. 

1. Introduction 

In the last ten years, direct methods have been increas- 
ingly used in problems of macromolecular structure 
determination to supplement existing methods of 
isomorphous replacement, anomalous dispersion and 
molecular replacement. They have been shown to be 
a valuable addition, particularly for phase extension 
and refinement and for the determination of heavy- 
atom positions in isomorphous derivatives. More 
recently, a formal mathematical integration of the 
techniques of direct methods and isomorphous 

* Presented at the Am. Crystallogr. Assoc. winter meeting, 
National Bureau of Standards, Gaithersburg, Maryland, 29 March- 
2 April 1982, Abstr. PC1. 

replacement has been undertaken for a pair ofisomor- 
phous structures (Hauptman, 1982). It is naturally to 
be anticipated that a more rigorous attempt to com- 
bine these different techniques will enhance the scope 
of direct methods in macromolecular structure 
determinations. This anticipation cannot be fully con- 
firmed until the effects of errors in real data and of 
imperfect isomorphism have been satisfactorily 
assessed through extensive calculations and analyses. 
The theoretical validity of the approach, however, 
has been fully confirmed by initial calculations on 
error-free diffraction data from a moderate-size pro- 
tein, cytochrome Csso, Mr=14500  (Hauptman, 
Potter & Weeks, 1982). The calculations have shown 
that it is possible to estimate reliably several 
thousands of invariants, establishing the potential 
importance of integrated techniques of direct 
methods and isomorphous replacement. The present 
paper extends this recent work to triplets of isomor- 
phous structures in the expectation that a further 
strengthening will result. 

2. Definitions 

If ej, f~ and gi denote atomic structure factors for a 
corresponding triplet of isomorphous structure in P 1, 
then respective normalized structure factors Ea, Fa 
and GH are defined by 

N 
-1/2 EH= IEHlexp ( icPH) = Ot2oo ~, e jexp(2 r rH . r j )  

j= l  
(2.1) 

N 

Fn = lFn exp ( i¢,n) = aff2/o 2 Y~ f~ exp (2rr iH.r j )  
j= l  

(2.2) 

N 
r,,- 1/2 a s =  l a n  exp ( i~n) = ~,oo2 Y & e x p ( 2 r r n . r j ) ,  

j= l  

(2.3) 

where 

N 

am,o = Y~ ej""jjgj,° (2.4) 
j=!  
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some of the e/s, f / s  or g/s  may be zero (or negative, 
in the neutron diffraction case) and rj is the position 
vector of the atom labelled j. 

The mathematical formalism used throughout this 
paper has been introduced recently (Hauptman, 
1982) and only material specific to the present work 
will be described in detail. 

3. The probabilistic theory of the three-phase structure 
invariants 

3.1. The structure invariants 

For a triplet of isomorphous structures, given 

H + K + L = 0 ,  (3.1) 

there exist 27 three-phase structure invariants of 
which there are ten kinds, 

W 1 : ~H -lt- ~K-lt- ~L 

0)3 = ~H -~ ~K "3t- EL 

0)4 = CH -at- ~/K "4- I//L 

0)5= ~n +ffK+EL 

0)6= ~H+EK+¢L 

0)7 --'~ I~H "~- I//K "~- ~/tL 

0)8 = q'. + CK + EL 

0)9 ~ ~/IH + EK -Jr- EL 

0)1o= E.+¢~+EL, 

(3.2) 

the first neighborhood of each of which is defined to 
consist of the nine magnitudes 

IEHI, IEKI, IEL[, IFHI, IF.,I, IFL], IGHI, IGKI, IGLI. 
(3.3) 

3.2. The joint probability distribution of the nine struc- 
ture factors EH, EK, EL, Fn, FK, FL, GH, GK, GL, 
where H + K + L = 0  

It is assumed that an isomorphous triplet of struc- 
tures in P1 with atomic position vectors D,j = 
l, 2 , . . . ,  N is fixed and that normalized structure 
factors E, F and G are defined by (2.1)-(2.4). Denote 
reciprocal space by S, and by S × S × S the threefold 
Cartesian product, i.e. the collection of all ordered 
triples (h, k, i) of reciprocal-lattice vectors h, k, I. The 
primitive random variable is the ordered triple 
(H, K, L) of reciprocal-lattice vectors, which is 
assumed to be uniformly distributed over the subset 
of S x S × S defined by (3.1). Then the structure fac- 
tors EH, EK, EL, FH, FK, EL, GH, GK, GL, as functions 
of the primitive random variables H, K, L, are them- 
selves random variables. Denote by 

P= P(RI,  RE,  R3, SI, $2, $3, 7"1, T2, T3;tPl,  tP2, ~3,  

(3.4) ~/',, ~2, ~/'3, = , ,  =2, -%) 

the joint probability distribution of the magnitudes 
IEHI, IE.,I, lULl, IFI-II, IF.,[, IFLI, IG.I, IG~l, 16.1 and 
t h e  phases CH, CK, (~L, I//l-I, OK, ~//L, EH, EK, EL o f  t h e  
complex normalized structure factors EH, EK, EL, FH, 
FK, EL, GH, GK, GL. Then P is given by the 18-fold 
integral 

P = (27r)-I8RIRER3SIS2S3TI TET3 
oo 

× 

P 1 )P2,P3,0r1,0r2,0"3,71, "r2, "r3 =0 

21r 
X ~ plP2P3Orlor20"3~'l~'2~'3 

01,02, 03,XI ,X2,X3, t° 1 ,t°2,t°3 "~ 0 

x exp {--i[plRi COS (01-  qbl) +p2R2 cos (02-  qb2) 

+ p 3 R 3  cos  ( 0 3 -  t~3) + o t i s  I COS ( X I -  61) 

+ ~2s2 cos ( x 2 -  62) + ~3s3 cos (x3 - 4,3) 

+~'l TI cos (0)1- ~l )  +z2T2 cos (0)2- S2) 
N 

+ ~'3T3 cos (0)3- ~3)]} I-I qj dp do, d r  dO dx do, 
j=l  

(3.5) 
where 

qj = (exp { iejaEOl/oZ[p I cos (27rn.  rj - 01) 

+P2 cos (27rK. rj - 02) 

+P3 cos (2¢rL. rj - 03)  ] 

+ ~aolo/2[tr, cos (27rH. r~ -X, )  

+0"2 cos (27rK. r j -x2)  

+or 3 cos (27rL. rj -X3)] 
• - 1 / 2  +tgjotoo2 [~'l cos (27rH. r j-col)  

+ ~'2 cos (2"rrK. rj - to2) 

-{- T 3 COS (27TL . rj -- 0)3)]})H+K+L=0- (3.6) 

The derivations of qj and I]~1 qj and the evaluation 
of the 18-fold integral (3.5) follow the outline 
described by Hauptman (1982). 

The final formula, the first major result of this 
paper, is given by (3.7)-(3.18).* 

3.3. The conditional probability distribution of the 
three-phase structure invariant 0)~ = ~t)H -~- ~t)K "~- ~L, 
given the nine magnitudes IEH, EK], EL, IFH, IFK, 
FLI, I GHI, GKI, I GLI in its first neighbourhood 

Assume again that an isomorphous triplet of struc- 
tures in P1 is fixed and that the nine non-negative 
numbers R1, R2, R3, SI, $2, $3, Tl, 7"2, 7"3, instead of 
being variables as in (3.4) and (3.7), are also specified. 

* Equations (3.7)-(3.18) have been deposited with the British 
Library Lending Division as Supplementary Publication No. SUP 
39506(10 pp.). Copies may be obtained through The Executive 
Secretary, International Union of Crystallography, 5 Abbey 
Square, Chester CHI 2HU, England. 
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Suppose that the primitive random variable is the 
ordered triple (H, K, L), which is now assumed to be 
uniformly distributed over the subset of S × S  x S  
defined by (3.1) and 

IEHI=Ri, I~I=R2, I~l=n~, 
IFHI = S, ,  IF . I  = S2, IF~I = S~. 

I0.1= TI, Io~1= T2, lOLl = T3. 

(3.19) 

Denote by Pl(g21iR1, R2, R3, St, S2, S3, TI, T2, T3) 
the conditional probability distribution of 4o, + cK + 
40L, given (3.19). Only the case that the heavy atoms 
of the two derivatives are located in different positions 
in the unit cell is considered here. We have assumed 
that the normalized structure factors, the E's,  F 's  and 
G's, are associated with the native protein, first 
derivative and second derivative, respectively. 

The final formula, the second major result of this 
paper, is 

PI(O,IR,, R2, R3, S,, $2, $3, T,, T2, T3) 

- -1--L exp (A1 cos g21), (3.20) 
Kl 

where 

K1= 27rlo(Ai), (3.21) 

AI = 2{31R~ R 2 R  3 + f l 2 [ R l  R2S3 /z  3 + R, S2R3P.2  

+ $ 1 R 2 R 3 ~  1] 

-t-/33[ R I  R 2  T3"r13 + R~ T2R3~72 + TI R2R3"ITt] 

+/34[R1S2S3/z2/x3 + $1R2S3/z,/z3 + $1 $2 R3/zltz2] 

+/36[R, T2 T3 n2 n3 + T~ R2 T3 n, r!3 + 7", T2R3 nl n2] 

+fl7S, S2S3lzllx2lZa + /310Ti T2T3r/l r/2r/3}, (3.22) 

where 

I i  (23'i RiSi) 
t z , -  Io(23"1R,S,)' i =  1, 2, 3 (3.23) 

and 

I,(23"2R, T~) i =  1, 2, 3 (3.24) 
rh = Io( 2 3"2 R, T~ )' 

C~ 1/2,~ 1/2 ,,,1/2.,,1/2 
200 ~ 020 ut 200ut 002 

3'1 - , 3'2 - (3.25) 
0~020 -- 0£200 0/002 -- 0£200 

and Io and I1 are the modified Bessel functions. 
Note that in the special case that the heavy atoms 

of the two derivatives are located in different positions 
in the unit cell the coefficients/35,/38 and/39 appearing 
in (3.7) all vanish. Moreover, the remaining/3 's  are 
greatly simplified: 

3/2f  O~030-- 0£300) 
f l l  ~ --CI~ 200].( O~020-"-" ~ Og200)3 

f12 = 

/33 = 

f14 = 

/36 = 

137 = 

i l l0  

(aoo3 - 33oo) "~ 
+ (-~oo--~ - <~ 200 )----31 

1 1 2 ,  a300)(ce020 ct200)-3 6¢200 O~ 020t 0~030 -- 
1/2 (~t2OOOg 002(0g003 0£300)(0/002- 0£200) -3 

,,,I/2.,, [ 
-<-2oo<,o2o~<~o~o- ~ o o s ~ o 2 o -  <~oos -~ 

x[ 

1/2 
--~ 2000£002( 0£003- 0£300) ( 0£002- t~200) -3 

013/2[ ,.~ 020kut030-- 0£300)(0~020-- 0~200) -3 

13/2[ .,, 002t u003 -- 0£300) ( 0£002 -- 0~200) -3. 

(3.26) 

3.4. The optimal case 

Let us assume that the atomic content of the first 
or second derivative equals the atomic content of the 
native protein (P) plus the heavy-atom content (H,)  
or (H2), respectively. For abbreviation define 

E z~ = E z~, E z~ = Z z k ,  E z f  = E z~,. 
je  P ke H 1 la H 2 

Then, 

and 

<~2oo = Z z ~  

iX020 = E 2 2 Z p + Z Z H ,  

~oo2 = ~ z~  + y~ z ~  

(3.27) 

where 

All=Si-Rl, 

Al2 = $2-  R2, 

AI3 = S 3 - R3, 

A21 = T i -  Rl, 

An = T2-  R2, 

A23 = T 3 - R 3. 

(3.30) 

2y, = (1 + 2 2 Z~/~  Z~,)  

23'2 = (1 + 2 ~ Z2p/~ Z~2), (3.28) 

where the Zp are the atomic numbers (zero-angle 
scattering factors) of the atoms in the native protein, 
the ZH, the atomic numbers of the heavy atoms in 
the first derivative and the ZH2 those of the heavy 
atoms in the second derivative. 

When the/~i's and rli's approach 1, i.e. when 23', RiSi 
and 2T2R~T~ are large, we have 

A,--  [LZ3,/4(~] Z~)3/2]{R,R2R3 

+ 23'1(R1 R2 A 13 + RIAi2R3 + Ai I R2R3) 

+4y21(Rl AI2A13 + AIIR2Ai3 + AIIAI2R3) 

+ 8 3' 13A ! IAI2A 13} ( 3 . 2 9 )  

+ [ ~  Z3n2/ 4(~ Z~)3/2{ R,R2R3 

+ 2y2(R! R2A23 + Ri A22R3 + A21R2R3) 

+4T~(RI A22A23 + A21R2A23 + A21A22R3) 

+83"3A21322A23}, 
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The coefficients 2TI and 2y2 are calculated from 
their respective diffraction ratios; the diffraction 
ratios are a measure of the average change in intensity 
due to the addition of heavy atoms and are estima- 
ted at low resolution as (2y. Z21/y. Z2) 1/2 and 
(2  E Z2H2/E ~7"2"~ 1/2 --p, , respectively (Crick & Magdoff, 
1956): 

2% = 1 +4  × (Diffraction ratio~) -2, i = 1, 2. 

In analogy with the distributions for a pair of isomor- 
phous structures (Fortier, Weeks & H auptman, 1984), 
the predominant  terms of the distribution are the AAA 
terms and, to a lesser extent, the RAA terms. 

The distribution is capable of yielding extremely 
reliable estimates, particularly in those cases when 
both the Aij's and the 2y  coefficients are large. There 
is clearly an optimal amount of heavy-atom substitu- 
tion that leads to both sufficiently large differences 
in the intensities, and consequently in the normalized 
structure factors, and sufficiently large 2 y coefficients. 
For any given problem, the optimal amount of heavy- 
atom addition can be computed easily. In the optimal 
case, since the AiiAi2Ai3 terms are the predominant  
terms of the distribution, it follows that reliable esti- 
mates (i.e. large A values) are obtainable, even when 
the normalized structure factors themselves are small, 
provided that the differences between the normalized 
structure factors of the native protein and the two 
derivatives are large. Furthermore, since the Au's are 
signed values, both 0 and 180 ° estimates are obtain- 
able. A particularly favorable situation occurs when 
AIlAI2AI3 and A21A22A23 have the same sign. 

3.5. The conditional probability distributions of the 
remaining nine kinds of structure invariants, 
0)2, 0)3, • • • , 0)10 

In general, 

Pj(OjIR,, RE, R3,  $1,  $2, $3, T,, T2, T3) 

1 
Kj exp (Aj cos I2j), (3.31) 

where 

Kj= 27rlo(Aj), 

and 

Aj = 2{flI T"I RI R2R3 

j =  l, 2 , . . . ,  l0 (3.32) 

+ fl217.21RI R2S3 + 7.22R1 $2R3 + 7.23 SI R 2 R 3 ]  

+ fl317.31RI R2 T3 + 7.32R~ T2R3 + 7"33 T 1R2R3]  

÷ ~ 417.41RI S2S 3 ÷7.42SIR283 ÷7.4381S2R3] 

+/~617.61 R, T2 T3 + 7.6~ TI R: T3 + 7"63 T1T2R3] 

+ [377"7SI&S3 +/3107"10 T~ T2 T3}, 
j =  1, 2 , . . . ,  10. (3.33) 

where z =  C1C2C3 and Ci, i =  1,2, 3, is obtained by 
comparing the ith structure factor associated with the 
coefficient of r with the ith structure factor associated 
with the invariant. If these are of the same type, i.e. 
both R or both S or both T, then C~ = 1.0, i = 1, 2, 3. 
If one of these is of type R and the other of type S, 
then Ci =/zi [(3.23)], i = 1, 2, 3. If one of these is of 
type R and the other of type T, then C~ = r/i [(3.24)], 
i = 1, 2, 3. If one of these is type S and the other of 
type T, then Ci =/z~r/~, i = 1,2, 3. 

As an example, let us consider the invariant 05 = 
¢8 + OK + ~:L. Its associated normalized structure fac- 
tors are R~, $2 and T3 and 

7" 1 = 1 .0  Xt/,2 + ,03  

"/'21 --" 1 "0 x/z2 x iU,3'1~3 

"/'22 = 1 "0 x 1 "0 x 773 

"/'23 "-~ /-LI X/.L 2 X '/73 

ram = 1-O ×/z 2 x 1-0 

"/'32 = 1 "0 X/,/,2'172 X 773 

"/'33 = '/71 X ['/'2 X '173 

"/'41 = I "0 x 1.0 x/U,3T]3 

'/'42 "~- ~ l X ~-/'2 X / ' £ 3  973 

r43 =/z~ × 1.0 × r/3 

7.61 = 1.0 ×/1.£2~ 2 X 1 "0 

7.62 = 971 X/-/'2 X 1 "0 

7"63 = "l~l X/[Z 2 '172 X T]3 

"/'7=]./,1 X 1 "0 X/,/,3~ 3 

7"10 = 771 X f£2~2 X 1 "0. 

3.6. Advantages in phasing the native protein and the 
derivatives simultaneously 

For a triplet of reciprocal-lattice vectors H, K, L 
satisfying H + K + L = 0  there exist 27 three-phase 
structure invariants (3.2). Estimates of each of the 27 
invariants are obtained from the evaluation of (3.31) 
and, in particular, from the computation of their 
respective A values [(3.33)]. In most cases, the esti- 
mates (0 or 180 °) are the same for all 27 invariants 
belonging to the same family of reciprocal-lattice 
vectors H, K and L. The A values, however, may 
differ significantly. In the special case that all the 
2y~RiSi and 2yERiT~ are large, the 27 invariants have 
the same A values. If some of the 2ylRiS~ or 2y2R~T~ 
are small, the A values for the 27 invariants differ. 
For example, if 2yIRIS~ is small, all the invariants 
containing the phase CH have the same A values while 
the remaining invariants have a common A value, 
different from the former. For a given H, K, L satisfy- 
ing H + K + L = 0, the family of 27 invariants and their 
estimates constitute a redundant system of linear 



650 USE OF DIRECT METHODS IN ISOMORPHOUS REPLACEMENT. III 

Table 1. Heavy-atom content of the two cytochrome 
c550 derivatives used in the calculations 

Effective 
Der iva t ive  Abbrev ia t ion  Z ( e )  O c c u p a n c y  

PtCI4 z- 1Pt 84-24 I "08 
UO~ ÷ 2U 80"04 [U(I)] 0.87 

7"36 [U(2)] 0"08 

equations. In this system, owing to the relation H + 
K +L  = 0, only two phases, e.g. q~n and qJK, are linearly 
independent and are therefore suitable for origin 
specification; their values may be specified arbitrarily. 
The remaining seven phases, again because of the 
relation H +K +L = 0, are linearly dependent on the 
pair q>n, ~ and, once an enantiomorph has been 
fixed, e.g. by specifying arbitrarily the sign of a suit- 
able structure invariant, are uniquely determined by 
the observed magnitudes IEI, IFI, IGI and the specified 
values of the origin fixing pair q~H, qJK. Thus, the 
simultaneous use of all of the invariants, in conver- 
gence mapping and tangent refinement, automatically 
ensures common origin and enantiomorph definition 
in the native and the derivatives. Definition of the 
origin and enantiomorph is done in the usual manner. 

3.7. Test calculations 

The three-phase invariant probability distributions 
for the native and one derivative case (Hauptman, 
1982) and for the native and two derivative case 
[(3.31)] were used to estimate the values of these 
invariants for cytochrome c~5o. Cytochrome Csso from 
Paracoccus denitrificans is a moderate-size protein, 
Mr = 14 500, which crystallizes in space group P21212~ 
with four molecules in the unit cell (Timkovich & 
Dickerson, 1973, 1976). Coordinates were obtained 
from the Protein Data Bank (Bernstein et al., 1977) 
and used to calculate structure factors and normalized 
structure factors for the native protein and the two 
derivatives described in Table 1. Fixed spherical 
atoms were assumed. The computed normalized 
structure-factor amplitudes were than used to gener- 
ate three-phase structure invariants and to estimate 
their A values. 

The estimated invariants were then sorted in 
decreasing order according to IAI, and the desired 
numbers of highest ranking invariants were retained. 
The results of the calculations are shown in Tables 2 
and 3. The invariants in Tables 2 and 3 were evaluated 
using probability distributions for a pair of isomor- 
phous structures and for a triplet of isomorphous 
structures, respectively. More specifically, Haupt- 
man's (1982) formulas were applied to the three 
isomorphous pairs defined by the isomorphous triplet 
of structures, and the results summarized in Table 2. 
In Table 3 are summarized the results obtained by 
applying (3.31), the formulas specific for the isomor- 
phous triplet. Comparison of Tables 2 and 3 clearly 

Table 2. Average magnitude of  the error in estimated 
values (0 or 180 °) of 128 000 three-phase invariants 
for cytochrome C55o and the derivatives 1Pt and 2U 

The full 4 A  sets o f  phases  ¢, qJ and  s c (i.e. 1076 q~'s, 1076 qJ's and  
1076 ~:'s) were  used, two at a t ime, to generate  three sets o f  three-  
phase  invariants .  The invar iant  sets were merged  and  the 128 000 
th ree -phase  s tructure invar iants  co r respond ing  to the 128 000 

largest  IA, I values were used to construct  this table.  

% of  
Average  Average invar iants  

N u m b e r  in value of  lerror[ with 
group [a,I (o) lerrorl_>90 o 

1000 6.29 12.7 0.80 
5000 5.34 13.4 0.32 

10 000 4.81 15.4 0-44 
15 000 4.47 17.1 0.50 
20 000 4.23 i 8.7 0-60 
25 000 4-03 19"9 0.55 
50 000 3.42 24.4 1-06 
75 000 3.05 27.4 1-90 

100 000 2.79 29.4 2.71 
128 000 2-57 31-6 3.60 

Table 3. Average magnitude of  the error in estimated 
values (0 or 180 °) of 128 000 three-phase invariants 
for cytochrome C55o and the derivatives 1Pt and 2U 

[using equation 3.31)] 

The full 4 ,~, sets o f  phase  ¢, ~ and  ~ (i.e. 1076 ~p's, 1076 ~b's and  
1076 ~:'s) were  used to genera te  the th ree -phase  invariants .  The  
128 000 th ree -phase  invar iants  cor responding  to the 128 000 largest  
[A,[ values were used to construct  this table. 

% o f  
Average  Average invariants  

N u m b e r  in value of  [error] with 
group IA, [ (°) [errorl->90 ° 

1000 9"43 9"5 0"00 
5000 7.65 13"3 0-00 

10 000 6-86 14"7 0-12 
15 000 6"40 15"7 0"19 
20 000 6.07 16"3 0"20 
25 000 5-81 17"0 0"25 
50 000 5"01 19"7 0"63 
75 000 4"54 21 "7 0.79 

100 000 4"21 23"3 1-00 
128 000 3"93 24.8 1 "22 

shows that, as anticipated, diffraction data from a 
triplet of isomorphous structures yield better esti- 
mates for the three-phase structure invariants via 
(3.31) than are obtainable by means of the earlier 
formulas appropriate to isomorphous pairs. 

4. Concluding remarks 

Recent advances in direct methods have been 
integrated with the method of isomorphous replace- 
ment, and the probabilistic theory of the three-phase 
structure invariants for a triplet of isomorphous struc- 
tures has been worked out. In particular, the condi- 
tional probability distribution of the three-phase 
structure invariant, assuming as known the nine mag- 
nitudes in its first neighbourhood, has been derived 
for the case of a native protein and two heavy-atom 
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derivatives where the heavy atoms of the derivatives 
occupy different positions. The distribution yields a 
reliable estimate (0 or 7r) for the invariant in the 
favorable case that the variance of the distribution is 
small. An example shows the improvement in esti- 
mates of the three-phase structure invariants which 
results from the ability now to exploit simultaneously 
the diffraction data from a triple of isomorphous 
structures, at least in the special case of a native 
protein and two heavy-atom derivatives in which the 
heavy atoms of the derivatives are located in different 
positions in the unit cell. Particularly noteworthy is 
the ease of unique origin and enantiomorph specifica- 
tion in direct-methods applications to all three struc- 
tures. 

It would be premature to assess, at this point, the 
role that the distributions will play in actual 
macromolecular structure determinations, or to com- 
pare the present technique with the standard multiple 
isomorphous replacement technique. As mentioned 
earlier, several questions remain to be answered, prin- 
cipally concerning the effects of errors in the diffrac- 
tion data and of imperfect isomorphism. These ques- 
tions are the subject of a present study and the results 
will be presented at a later date. 

It should be stated in conclusion that, in view of 
the available evidence, the integrated direct methods- 
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isomorphous replacement probability distributions 
constitute a sound theoretical basis for 
macromolecular phase determination. 
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Abstract 

Probability density functions that are exact solutions 
to classical random-walk problems have been adapted 
to represent distributions of the magnitude of the 
normalized structure factor, for the space groups P]  
and P 1. The functions are given by readily summable 
Fourier and Fourier-Bessel series, and account 
explicitly for the atomic composition of the asym- 
metric unit. These new probability density functions 

0108-7673/84/060651-10501.50 

have been extensively tested by comparison with 
simulated histograms of ]El, for a wide range of 
atomic compositions. The most heterogeneous com- 
positions examined are C14U and C/9U, for P1 and 
P1, respectively. Very good agreement between the 
simulated and theoretical distributions has been 
obtained in all these tests, over the entire (useful) 
range 0 < ]E[ < 3. A distribution of]El values, recalcu- 
lated from published data on a triclinic platinum 
complex with chloroorganic ligands, has also been 
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